Домой Где взять деньги Понятие абсолютно твердого тела и законы вращательного движения. Предмет физики

Понятие абсолютно твердого тела и законы вращательного движения. Предмет физики

Абсолютно твёрдое тело

Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой . Механика абсолютно твердого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела), представляющее большой теоретический и практический интерес.

Существует несколько определений:

  1. Абсолютно твёрдое тело - модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.
  2. Абсолютно твёрдое тело - механическая система , обладающая только поступательными и вращательными степенями свободы . «Твёрдость» означает, что тело не может быть деформировано , то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.
  3. Абсолютно твёрдое тело - тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.
  • Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела).

В трёхмерном пространстве и в случае отсутствия (других) связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.

Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ей можно пренебречь, реальное тело может (приближенно) рассматриваться как абсолютно твёрдое тело без ущерба для задачи.

В рамках релятивистской механики понятие абсолютно твёрдого тела внутренне противоречиво, что показывает, в частности, парадокс Эренфеста . Другими словами, модель абсолютно твердого тела вообще говоря совершенно неприменима к случаю быстрых движений (сопоставимых по скорости со скоростью света), а также к случаю очень сильных гравитационных полей .

Динамика абсолютно твердого тела

Динамика абсолютно твердого тела полностью определяется его полной массой, положением центра масс и тензором инерции (также, как динамика материальной точки - ее массой). (Конечно, имеется в виду, что заданы все внешние силы и внешние связи, которые, конечно, могут зависеть от формы тела или его частей и т.д.).

Другими словами, динамика абсолютно твердого тела при неизменных внешних силах зависит от распределения его масс только через полную массу, центр масс и тензор инерции, в остальном детали распределения масс абсолютно твердого тела никак не скажется на его движении ; если как-то так перераспределить массы внутри абсолютно твердого тела, что не изменится центр масс и тензор инерции, движение твердого тела в заданных внешних силах не изменится (хотя при этом могут измениться и как правило изменятся внутренние напряжения в самом твердом теле!).

Частные определения

Абсолютно твёрдое тело на плоскости называется плоским ротатором . Он имеет 3 степени свободы: две поступательные и одну вращательную.

Абсолютно твёрдое тело с одной закреплённой точкой, неспособное вращаться и помещённое в поле тяжести, называется физическим маятником .

Абсолютно твёрдое тело с одной закреплённой точкой, но способное вращаться, называется волчком .

Примечания

Литература

  • Суслов Г. К. «Теоретическая механика». М., «Гостехиздат» 1946
  • Аппель П. «Теоретическая механика» тт. 1,2. М. «Физматгиз» 1960
  • Четаев Н. Г. «Теоретическая механика». М. «Наука» 1987
  • Маркеев А. П. «Теоретическая механика». М. «Наука» 1999
  • Голубев Ю. Ф. «Основы теоретической механики». М., Изд-во Моск. Ун-та, 2000
  • Журавлев В. Ф. «Основы теоретической механики». М., «Наука» 2001

Ссылка


Wikimedia Foundation . 2010 .

Смотреть что такое "Абсолютно твёрдое тело" в других словарях:

    абсолютно твёрдое тело

    абсолютно твёрдое тело - absoliučiai standus kūnas statusas T sritis fizika atitikmenys: angl. perfectly rigid body vok. absolut starrer Körper, m rus. абсолютно твёрдое тело, n pranc. corps parfaitement rigide, m; solide parfait, m … Fizikos terminų žodynas

    Модель твёрдого тела, которое считается недеформируемым при любых воздействиях (Болгарский язык; Български) абсолютно твърдо тяло (Чешский язык; Čeština) dokonale tuhé těleso (Немецкий язык; Deutsch) nicht verformbarer Körper; absolut starrer… … Строительный словарь

    твёрдое тело - абсолютно твёрдое тело; твёрдое тело Материальное тело, в котором расстояние между двумя любыми точками всегда остаётся неизменным … Политехнический терминологический толковый словарь

    Модель расположения атомов в кристалле твёрдого тела Твёрдое тело это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов … Википедия

    Абсолютно твёрдое тело в механике механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме… … Википедия

    Абсолютный (лат. absolutus законченный, неограниченный, безусловный, совершенный) абсолютный означает то, что рассматривается само по себе, без отношения к чему либо другому, противопоставляется относительному. Значения В философии: Абсолютная… … Википедия

    Тело, или физическое тело в физике материальный объект, имеющий массу и отделенный от других тел границей раздела. Тело есть форма существования вещества. См. также Абсолютно твёрдое тело Абсолютно чёрное тело Деформируемое тело Материальная… … Википедия

    - (от греч. statike учение о весе, о равновесии), раздел механики, посвящённый изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитич. С. лежит возможных перемещений принцип … Физическая энциклопедия

    - (от греч. statike учение о весе, о равновесии) раздел механики, посвященный изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитической С. лежит возможных… … Большая советская энциклопедия

Абсолютно твёрдое тело (твёрдое тело) – тело, расстояние между частями которого не изменяется при действии на него сил, т.е. форма и размеры твёрдого тела не меняются при действии на его любых сил. Конечно таких тел в природе не существует. Это физическая модель. В тех случаях, когда деформации алы, можно реальные тела рассматривать как абсолютно твёрдые. Движение твердого тела в общем случае очень сложно. Мы рассмотрим только два вида движения тела:

1. Поступательное движение:

Движение тела считается поступательным , если любой отрезок прямой линии, жестко связанный с телом, всё время перемещается параллельно самому себе. При поступательном движении все точки тела совершают одинаковые перемещения, проходят одинаковые пути, имеют равные скорости и ускорения, описывают одинаковые траектории.

2. Вращательное движение:

Вращение твёрдого тела вокруг неподвижной оси – движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая является осью вращения.

При вращении тела радикс окружности, описываемой точкой этого тела, повернётся за интервал времени на некоторый угол. Вследствие неизменности взаимного расположения точек тела на такой же угол повернутся за тоже время радиусы окружностей, описываемых любыми другими точками тела. à Этот угол является величиной, характеризующей вращательное движение всего тела в целом. Отсюда можно сделать вывод, что для описания вращательного движения абсолютно твердого тела вокруг неподвижной оси надо знать только одну переменную – угол, на который повернется тело за определенное время.

Связь между линейной и угловой скоростями для каждой точки твердого тела даётся формулой V = ώ R

Также точки твердо тела имеют нормальные и тангенциальные ускорения, которые можно задать формулами:

а n = ώ 2 R a τ = βR

3. Плоскопараллельное движение:

Плоскопараллельное движение – движение, при котором каждая точка тела движется постоянно в одной плоскости, при этом все плоскости параллельны между собой.

Теперь давайте разберёмся, что такое мгновенный центр вращения. Предположим, что колесо катится по какой-нибудь плоскости. движение этого колеса можно рассматривать как последовательность бесконечно малых поворотов вокруг точек. Отсюда можно сделать вывод, что в каждый момент колесо вращается вокруг своей нижней точки. Эта точка и называется мгновенным центром вращения .

Мгновенная ось вращения – линия соприкосновения диска с плоскостью в данный момент времени.

В разделе на вопрос что такое обсолютно твердое тело заданный автором Европейский лучший ответ это Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой. Механика абсолютно твердого тела полностью сводима к механике материальных точек (с наложенными связями) , но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела) , представляющее большой теоретический и практический интерес.
Существует несколько определений:
Абсолютно твёрдое тело - модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.
Абсолютно твёрдое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.
Абсолютно твёрдое тело - тело (система) , взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.
Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела) .
В трёхмерном пространстве и в случае отсутствия (других) связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.
Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ей можно пренебречь, реальное тело может (приближенно) рассматриваться как абсолютно твёрдое тело без ущерба для задачи.
В рамках релятивистской механики понятие абсолютно твёрдого тела внутренне противоречиво, что показывает, в частности, парадокс Эренфеста. Другими словами, модель абсолютно твердого тела вообще говоря совершенно неприменима к случаю быстрых движений (сопоставимых по скорости со скоростью света) , а также к случаю очень сильных гравитационных полей

Абсолютно твердым телом называется тело, деформациями которого можно пренебречь в данной задаче и при всех условиях расстояние между двумя точками этого тела остается постоянным.

Инертность тел при вращательном движении характеризует величина, называемая моментом инерции. Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс и материальных точек системы на квадрат их расстояний до рассматриваемой оси:

I=m i r i 2 (3.1)

В случае непрерывного распределения масс эта сумма сводится к интегралу:

I=∫r 2 dm (3.2), где интегрирование производится по всему объему.

Для однородного сплошного диска (цилиндра):

I=0.5 mR 2 (3.3), если ось вращения проходит через центр тяжести (масс).

Момент инерции относительно произвольной оси определяется теоремой Штейнера:

I=I c +ma 2 (3.4), где a - расстояние между осями.

Способность силы вращать тело характеризует физическая величина, называемая моментом силы:

О – ось вращения
l – плечо силы
α – угол между вектором F и радиус-вектором r

Модуль момента силы: M=F r sinα=F l (3.6)

r sinα - кратчайшее расстояние между линией действия силы и точкой О – плечо силы.

Моментом силы называется физическая величина, определяемая произведением силы на ее плечо.

По аналогии с поступательным движением можно записать уравнение динамики вращательного движения:

Аналогом импульса тела при вращательном движении является момент импульса относительно оси. Векторная величина.

Модуль момента импульса:

L=r P sinα=m υ r sinα=Pl (3.9)
L z =I ω (3.10)

(3.12)

dL z /dt=M z (3.13)

Это выражение еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса относительно оси равна моменту сил относительно той же оси. Можно показать, что имеет место векторное равенство:

В замкнутой системе момент внешних сил M=0; dL/dt=0, откуда L=const (3.15) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени. Закон сохранения импульса – фундаментальный закон природы. Он связан со свойством симметрии пространства – его изотропностью, т.е. инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Работа при вращательном движении:

dA=M z dφ (3.16)

Кинетическая энергия:

T=Iω 2 /2 (3.17)

Полная энергия система перемещающейся поступательно и вращающейся равна:

E=+ (3.18)

Можно составить таблицу аналогично динамики поступательного и вращательного движения.

Поступательное движение

Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил.

Под равновесием будем понимать состояние покоя тела по отношению к другим телам, например по отношению к Земле. Условия равновесия тела существенно зависят от того, является ли это тело твердым, жидким или газообразным. Равновесие жидких и газообразных тел изучается в курсах гидростатики или аэростатики. В общем курсе механики рассматриваются обычно только задачи о равновесии твердых тел.

Все встречающиеся в природе твердые тела под влиянием внешних воздействий в той или иной мере изменяют свою форму (деформируются). Величины этих деформаций зависят от материала тел, их геометрической формы и размеров и от действующих нагрузок. Для обеспечения прочности различных инженерных сооружений и конструкций материал и размеры их частей подбирают так, чтобы деформации при действующих нагрузках были достаточно малы. Вследствие этого при изучении условий равновесия вполне допустимо пренебрегать малыми деформациями соответствующих твердых тел и рассматривать их как недеформируемые или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между каждыми двумя точками которого всегда остается постоянным. В дальнейшем при решении задач статики все тела рассматриваются как абсолютно твердые, хотя часто для краткости их называют просто твердыми телами.

Состояние равновесия или движения данного тела зависит от характера его механических Взаимодействий с другими телами, т. е. от тех давлений, притяжений или отталкиваний, которые тело испытывает в результате этих взаимодействий. Величина, являющаяся основной мерой механического взаимодействия материальных тел, называется в механике силой.

Рассматриваемые в механике величины можно разделить на скалярные, т. е. такие, которые полностью характеризуются их числовым значением, и векторные, т. е. такие, которые помимо числового значения характеризуются еще и направлением в пространстве.

Сила - величина векторная. Ее действие на тело определяется: 1) числовым значением или модулем силы, 2) направлением силы, 3) точкой приложения силы.

Модуль силы находят путем ее сравнения с силой, принятой за единицу. Основной единицей измерения силы в Международной системе единиц (СИ), которой мы будем пользоваться (подробнее см. § 75), является 1 ньютон (1 Н); применяется и более крупная единица 1 килоньютон . Для статического измерения силы служат известные из физики приборы, называемые динамометрами.

Силу, как и все другие векторные величины, будем обозначать буквой с чертой над нею (например, F), а модуль силы - символом или той же буквой, но без черты над нею (F). Графически сила, как и другие векторы, изображается направленным отрезком (рис. 1). Длина этого отрезка выражает в выбранном масштабе модуль силы, направление отрезка соответствует направлению силы, точка А на рис. 1 является точкой приложения силы (силу можно изобразить и так, что точкой приложения будет конец силы, как?? на рис. А, в). Прямая DE, вдоль которой направлена сила, называется линией действия силы. Условимся еще о следующих определениях.

1. Системой сил будем называть совокупность сил, действующих на рассматриваемое тело (или тела). Если линии действия всех сил лежат в одной плоскости, система сил называется плоской, а если эти линии действия не лежат в одной плоскости, - пространственной. Кроме того, силы, линии действия которых пересекаются в одной точке, называются сходящимися, а силы, линии действия которых параллельны друг другу, - параллельными.

2. Тело, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.

3. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.

4. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.

5. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

6. Силы, действующие на данное тело (или систему тел), можно разделить на внешние и внутренние. Внешними называются силы, которые действуют на это тело (или на тела системы) со стороны других тел, а внутренними - силы, с которыми части данного тела (или тела данной системы) действуют друг на друга.

7. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.

Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые в механике рассматривают как сосредоточенные, представляют собой по существу равнодействующие некоторых систем распределенных сил.

В частности, рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собой равнодействующую сил тяжести, действующих на его частицы. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.

Задачами статики являются: 1) преобразование систем сил, действующих на твердое тело, в системы им эквивалентные, в частности приведение данной системы сил к простейшему виду; 2) определение условий равновесия систем сил, действующих на твердое тело.

Решать задачи статики можно или путем соответствующих геометрических построений (геометрический и графический методы), или с помощью численных расчетов (аналитический метод). В курсе будет главным образом применяться аналитический метод, однако следует иметь в виду, что наглядные геометрические построения играют при решении задач механики чрезвычайно важную роль.

Новое на сайте

>

Самое популярное